Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]
WiSe 2024/25

Deepstream– A investigation in machine learning / “AI” – In collaboration with Hybrides Lernatelier - Einzelansicht

  • Funktionen:
  • Zur Zeit keine Belegung möglich
Grunddaten
Veranstaltungsart Werk-/Fachmodul SWS 4
Veranstaltungsnummer 324210011 Max. Teilnehmer/-innen 8
Semester WiSe 2024/25 Zugeordnetes Modul
Erwartete Teilnehmer/-innen
Rhythmus
Hyperlink  
Sprache englisch
Belegungsfrist Fak. Kunst und Gestaltung    11.10.2024 - 13.10.2024    Fak. Kunst und Gestaltung    11.10.2024 - 13.10.2024   
Termine Gruppe: [unbenannt]
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Bemerkung fällt aus am Max. Teilnehmer/-innen
Einzeltermine anzeigen
Di. 13:30 bis 16:30 wöch. von 22.10.2024  Bauhausstraße 9a - Gestalterisches Zentrum 001      
Gruppe [unbenannt]:
Zur Zeit keine Belegung möglich
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
König, Alexander , Dr.phil.
Studiengänge
Abschluss Studiengang Semester Leistungspunkte
M. F. A. Medienkunst/Mediengestaltung (M.F.A.), PV29 - 6
LA Gymnas./1.Staatspruef. Lehramt an Gymnasien 1. Fach Kunsterziehung, PV29 - 6
LA Gymnas./1.Staatspruef. Lehramt an Gymnasien Doppelfach Kunst, PV29 - 6
B. F. A. Medienkunst/Mediengestaltung (B.F.A.), PV19 - 6
M. F. A. Medienkunst/Mediengestaltung (M.F.A.), PV19, 4-Semester - 6
M. F. A. Medienkunst/Mediengestaltung (M.F.A.), PV19, 2-Semester - 6
M. F. A. Medienkunst/Mediengestaltung (M.F.A.), PV2021, 4-Semester - 6
M. F. A. Medienkunst/Mediengestaltung (M.F.A.), PV2021, 2-Semester - 6
LA Gymnas./1.Staatspruef. Lehramt an Gymnasien Kunst im Zweifachstudium, PV2022 - 6
LA Gymnas./1.Staatspruef. Lehramt an Gymnasien Kunst im Doppelfachstudium, PV2022 - 6
B. F. A. Medienkunst/Mediengestaltung (B.F.A.), PV29 - 6
Zuordnung zu Einrichtungen
Gestaltung medialer Umgebungen
Mediengestaltung/Medienkunst
Inhalt
Beschreibung

The generalization of recursive algorithms and its implementation in digital computers concretize cybernetic thinking and its applications in almost all social, economical and political domains. Capital moves from a mechanistic model, accurately observed by Marx, towards an organismic model realized by informational machines equipped with complex recursive algorithms. Data is the source of information; it is that which allows the recursive models to be ubiquitous and effective.

The digital urbanism that is in the process of developing, and which will be the central theme of the digital economy, is driven by the recursive operation of data. Data, in Latin, means something that is already given, like sense data that determines the falling of the tick, or the red colour of the apple in front of me. Since the mid-twentieth century, data has acquired a new meaning, namely, computational information, which is no longer merely ‘given’ as such, but is rather produced and modulated by human beings. In this sense, we can see that the notion of ‘societies of control’ described by Gilles Deleuze is far beyond the common discourse of a society of surveillance; it rather means societies whose governmentality is based on the auto-position and auto-regulation of automatic systems. These systems vary in scale; it can be a global corporation like Google, a city like London, a nation state like China and also the whole planet.

Yuk Hui - MACHINE AND ECOLOGY, in Cybernetics for the 21st Century, Vol. 1: Epistemological Reconstruction, Edited by Yuk Hui, Hanart Press 2024

 

The aim of the course is to gain a critical understanding of machine learning and its application. The course focuses on the analysis of classification of video streams and their classification. Another central topic is cloud infrastructures and the so-called "edge computing" or "Internet of Things", which together with machine learning, form an almost all-encompassing set of tools for data collection that is beyond any (state) control. The course is therefore also suitable for those who are interested in a critical examination of "AI". The course gives an introduction to machine learning and its programming in Python using Nvidia Jetson Nano Computers, that we set up in the seminar. Programming knowledge in Python is mandatory. The seminar will be a conceptual workshop that allows students to explore different tools in an open environment.

Course Objectives: This course aims to provide students with a comprehensive understanding of machine learning (ML) and its practical applications, fostering critical reflection on the implications of these technologies. By engaging with real-world problems and ethical dilemmas, participants will be equipped to navigate the complexities of ML in an increasingly data-driven society.

Conceptual Workshop: The course will adopt a seminar format that encourages collaboration and open exploration. Students will work in groups on projects that challenge them to apply their technical skills while engaging in critical discussions about the ethical implications of their work.

Peer feedback sessions and structured debates will provide opportunities for students to articulate their perspectives, challenge assumptions, and develop a well-rounded understanding of the complexities surrounding ML and AI.

This course is designed for students with a foundational understanding of programming, particularly in Python, who are interested in machine learning, video analysis, and the ethical dimensions of AI technologies.

By integrating technical skills with critical reflection, this course aims to produce not only proficient machine learning practitioners but also informed citizens who can thoughtfully engage with the implications of AI technologies. Students will leave with a nuanced understanding of how ML can be harnessed for positive societal impact while remaining vigilant to its potential risks and ethical challenges.

 

Link: https://www.media-art-theory.com/Seminar_Deepstream.pdf

 


Strukturbaum
Die Veranstaltung wurde 3 mal im Vorlesungsverzeichnis WiSe 2024/25 gefunden:
Werk-/Fachmodule  - - - 1
Fachmodule  - - - 2

BISON-Portal Startseite   Zurück Kontakt/Impressum Datenschutz